

Prof. Dr. Abdelilah Benyoussef
Permanent member of the Hassan II Academy of Science and Technology, Founder of the former Laboratoire de
Physique Statistique "now LaMCScI", He is the coordinator of the poles of skills and knowledge on Condensed
Matter, simulation and Modeling. editor in chief of the Moroccan Journal of Condensed Matter. He is President of
the Moroccan Society of Statistical Physics and Condensed Matter. Abdelilah has a long-standing interest and
expertise in Ab initio calculation and Monte-Carlo method of complex and new materials for renewable energy.
His other fields of interest are Magnetism and phase transition in condensed matter; complex systems and
critical self-organization in statistical physics. He is graduated from Paris-Sud University (1983). He is the founder
of graduate program on statistical physics at the faculty of sciences Rabat, meanwhile he has trained several
generations of graduate and undergraduate (bachelor degree) in the field of condensed material sciences and
statistical physics

Module

Syllabus

Courses description
Course objective
Topics covered and Out of Class
Assignments



Pre-Requis

Delivery & Duration

Who this programme is for

Course Certificate of Completion

Technology Skill and Text book

Textbooks, Sofwares, Codes

Topics covered/Course Outline

Materials science and engineering
Material Energy Solutions: Computer Simulation & Modeling

This syllabus is strongly recommended to students enrolled in physics, electrical engineering, materials science and chemistry. The courses cover state-of-the-art codes for the calculation of electronic, optical and magnetic properties to design novel materials with superior properties and functionalities. A dialogue between experimentalists and theoreticians to identify the most promising materials and devices related to energy, storage and sustainable environments. Density-functional theory (DFT) calculation are complemented by the molecular dynamics and the Monte Carlo simulations techniques to predict, explain, and control properties of materials at different scale. These courses focus on the study, by computer simulation and modeling, of nanomaterials studied in the syllabus "Nanomaterials from synthesis to energy applications". The great interest in different nanomaterials is motivated by the variety of properties they show, being candidates for numerous applications. Indeed, some nanomaterials are used for energy conversion using photovoltaic effect or as a metal-free water splitting (photo)catalyst. They are also used for energy storage; as in (Li/Na/Mg)-ion batteries or as solid state materials for hydrogen storage.

Course objectives:

• Understand how to build a model which describes the material to be simulated. The variables and the parameters describing the model are deduced from the calculations of the density functional theory of the ground state. In particular, crystalline structure, electronic structure, energy, stability and phase transitions. Thus, this course addresses the foundations of density functional theory and develops all the approximations and tools necessary for its implementation.

• Understand how to do the detailed calculations of the electronic, magnetic, optical, electrical properties of the

material in the ground state

•Understand how to simulate the established model under the operating conditions (temperature, pressure, ...) of the material in the desired application. Particular emphasis is placed on materials for the conversion and storage of energy. This simulation makes it possible to calculate the properties (electronic, magnetic, electrical, optical, transport, etc.) of the material and thus predict its behavior under operating conditions even before manufacturing it. For the achievement of this objective, the Monte Carlo simulation is presented. Starting with the basics and going to the details of the parameterization and tools for its implementation for different applications.

Basic elements of quantum mechanics, Thermodynamics and statistical physics

Basic elements of solid-state physics and material sciences

Basic elements of Probability theory, numerical analysis and programming language.

Basic elements of Non-equilibrium and dynamics

Online Classes | #meeting per week, # hour each

Bachelor/Master/PhD

Upon completion of a course, and once the participation has been verified, the candidate will receive an electronic certificate to download, print, and keep in his records

Signed by the VLU/Prof. Abdelilah Benyoussef

Typical Computer Science skills

Textbooks:

Density Functional Theory: A Practical Introduction, David Sholl, Janice A Steckel

Density Functional Theory in Quantum Chemistry, Takao Tsuneda

Computational Materials Science : From Ab Initio to Monte Carlo Methods, Kaoru Ohno , Keivan E<mark>sfarjan</mark>i, Yoshiyuki Kawazoe

Monte Carlo Methods in Statistical Physics, M.E.J. Newman and G.T. Barkema Softwares: Fortran, C++,..., Codes: Wien2K, Quantun Espresso, Akai-KKR, ....

I- Density Functional Theory

I-1 The foundation of modern density functional theory

I-2 Kohn-Sham equations

I-3 Density functional theory approximations I-4 Limits of density functionals

I-5 analysis tools and Exchange-correlation hole

I-6 Time-dependent DFT

II- Monte Carlo simulation

II-1 The principles of equilibrium thermal Monte Carlo simulation

II-2 Simple sampling Monte Carlo methods

II-3 Importance sampling Monte Carlo methods

II-4 Systems with quenched randomness

II-5 Sampling the free energy and entropy
III- Nanomaterials for energy conversion and storage

III-1 Graphene, the first truly 2D crystal

III-2 Control of Graphene's Properties and applications

III-3 Phosphorene

III-4 Control of Phosphorene's Properties and applications (Photocatalytic hydrogen generation, hydrogen storage)

Online courses / Zoom management by Sabaek for Education & Training (Bahrain)

The student will be able to

(1) Select materials for photovoltaics application, Storage, or other specific applications.

(2)Understand materials by properties targeting energy solution.

Program Learning Outcomes (PLOs)
(3)Use codes and solve standard problems and computations targeting materials performance for Solar cells, Libatteries, membranes, Materials for chemical catalysis
(4)Read scientific publications and technical documents dealing with the simulation and modeling

(5)To discuss experiments results and analyse data critically/creatively and draw comprehensive conclusions

Application Deadline

Media Tools

Send an e-mail to info@vluplatform.net to receive zoom invitation